Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Infect Control Hosp Epidemiol ; 43(10): 1317-1325, 2022 10.
Article in English | MEDLINE | ID: covidwho-2185255

ABSTRACT

OBJECTIVES: To evaluate the prevalence of hospital-onset bacteremia and fungemia (HOB), identify hospital-level predictors, and to evaluate the feasibility of an HOB metric. METHODS: We analyzed 9,202,650 admissions from 267 hospitals during 2015-2020. An HOB event was defined as the first positive blood-culture pathogen on day 3 of admission or later. We used the generalized linear model method via negative binomial regression to identify variables and risk markers for HOB. Standardized infection ratios (SIRs) were calculated based on 2 risk-adjusted models: a simple model using descriptive variables and a complex model using descriptive variables plus additional measures of blood-culture testing practices. Performance of each model was compared against the unadjusted rate of HOB. RESULTS: Overall median rate of HOB per 100 admissions was 0.124 (interquartile range, 0.00-0.22). Facility-level predictors included bed size, sex, ICU admissions, community-onset (CO) blood culture testing intensity, and hospital-onset (HO) testing intensity, and prevalence (all P < .001). In the complex model, CO bacteremia prevalence, HO testing intensity, and HO testing prevalence were the predictors most associated with HOB. The complex model demonstrated better model performance; 55% of hospitals that ranked in the highest quartile based on their raw rate shifted to a lower quartile when the SIR from the complex model was applied. CONCLUSIONS: Hospital descriptors, aggregate patient characteristics, community bacteremia and/or fungemia burden, and clinical blood-culture testing practices influence rates of HOB. Benchmarking an HOB metric is feasible and should endeavor to include both facility and clinical variables.


Subject(s)
Bacteremia , Fungemia , Humans , Fungemia/diagnosis , Fungemia/epidemiology , Benchmarking , Feasibility Studies , Bacteremia/diagnosis , Bacteremia/epidemiology , Hospitals
2.
Microbiol Spectr ; 9(2): e0113821, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1476402

ABSTRACT

The aim of this study was to evaluate diagnostic means, host factors, delay of occurrence, and outcome of patients with COVID-19 pneumonia and fungal coinfections in the intensive care unit (ICU). From 1 February to 31 May 2020, we anonymously recorded COVID-19-associated pulmonary aspergillosis (CAPA), fungemia (CA-fungemia), and pneumocystosis (CA-PCP) from 36 centers, including results on fungal biomarkers in respiratory specimens and serum. We collected data from 154 episodes of CAPA, 81 of CA-fungemia, 17 of CA-PCP, and 5 of other mold infections from 244 patients (male/female [M/F] ratio = 3.5; mean age, 64.7 ± 10.8 years). CA-PCP occurred first after ICU admission (median, 1 day; interquartile range [IQR], 0 to 3 days), followed by CAPA (9 days; IQR, 5 to 13 days), and then CA-fungemia (16 days; IQR, 12 to 23 days) (P < 10-4). For CAPA, the presence of several mycological criteria was associated with death (P < 10-4). Serum galactomannan was rarely positive (<20%). The mortality rates were 76.7% (23/30) in patients with host factors for invasive fungal disease, 45.2% (14/31) in those with a preexisting pulmonary condition, and 36.6% (34/93) in the remaining patients (P = 0.001). Antimold treatment did not alter prognosis (P = 0.370). Candida albicans was responsible for 59.3% of CA-fungemias, with a global mortality of 45.7%. For CA-PCP, 58.8% of the episodes occurred in patients with known host factors of PCP, and the mortality rate was 29.5%. CAPA may be in part hospital acquired and could benefit from antifungal prescription at the first positive biomarker result. CA-fungemia appeared linked to ICU stay without COVID-19 specificity, while CA-PCP may not really be a concern in the ICU. Improved diagnostic strategy for fungal markers in ICU patients with COVID-19 should support these hypotheses. IMPORTANCE To diagnose fungal coinfections in patients with COVID-19 in the intensive care unit, it is necessary to implement the correct treatment and to prevent them if possible. For COVID-19-associated pulmonary aspergillosis (CAPA), respiratory specimens remain the best approach since serum biomarkers are rarely positive. Timing of occurrence suggests that CAPA could be hospital acquired. The associated mortality varies from 36.6% to 76.7% when no host factors or host factors of invasive fungal diseases are present, respectively. Fungemias occurred after 2 weeks in ICUs and are associated with a mortality rate of 45.7%. Candida albicans is the first yeast species recovered, with no specificity linked to COVID-19. Pneumocystosis was mainly found in patients with known immunodepression. The diagnosis occurred at the entry in ICUs and not afterwards, suggesting that if Pneumocystis jirovecii plays a role, it is upstream of the hospitalization in the ICU.


Subject(s)
COVID-19/epidemiology , Coinfection/mortality , Fungemia/epidemiology , Pneumonia, Pneumocystis/epidemiology , Pulmonary Aspergillosis/epidemiology , Aged , Antifungal Agents/therapeutic use , COVID-19/mortality , COVID-19/pathology , Coinfection/epidemiology , Critical Care , Female , France/epidemiology , Fungemia/drug therapy , Fungemia/mortality , Galactose/analogs & derivatives , Galactose/blood , Humans , Intensive Care Units/statistics & numerical data , Male , Mannans/blood , Middle Aged , Pneumonia, Pneumocystis/drug therapy , Pneumonia, Pneumocystis/mortality , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/mortality , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
3.
J Med Virol ; 93(5): 2810-2814, 2021 May.
Article in English | MEDLINE | ID: covidwho-1206823

ABSTRACT

A known proportion of patients who are admitted for the novel coronavirus disease 2019 (COVID-19) requires intensive care unit (ICU) level of care. Prolonged ICU stay is a risk factor for the development of nosocomial candidemia. The current study aimed to investigate the incidence and risk factors associated with the development of nosocomial candidemia among patients admitted to the ICU for COVID-19. Patients who developed nosocomial candidemia were identified, and their clinical course was reported. A 1:3 case control matching was used to identify non-candidemia patients who served as controls. 89 patients were admitted to the ICU for COVID-19 during the study period. The incidence of nosocomial candidemia was 8.9% (n = 8). Case-control matching identified 24 patients with similar disease severity at the time of ICU admission. Median time to first isolation of yeast was 26 days. Candidemia patients reported longer median ICU stay than controls. (40 vs. 10 days, p = .004). In hospital death rates were comparable in both groups (38% vs. 54%, p = .548). Prolonged mechanical ventilation support was associated with the development of nosocomial candidemia.


Subject(s)
COVID-19/epidemiology , Cross Infection/epidemiology , Fungemia/epidemiology , Intensive Care Units/statistics & numerical data , Adult , Aged , Case-Control Studies , Female , Hospital Mortality , Hospitals, Teaching , Humans , Incidence , Length of Stay , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL